Syllabi of Course Units

Mod Code		EN5840	Title	Signal Analysis	Credits: 3					
	Learning Outcomes:									
On co	omple	etion of this	module	, students should be able to;						
1		riminate be niques.	tween de	eterministic and random signals and associated analy	vtical					
2	Exp	lain the diffe	erent cha	aracteristics of various important random processes.						
3	Deri	ve determin	istic lim	its of certain random sequences.						
4		•	-	es of the filtration of a random process/deterministic LTI) system.	signal through					
5	Sim	ulate randor	n variab	les and stochastic processes with certain properties.						
Outli 1	Ana dom	ain characte		t ic signals: Various representations, transformations (i.e., FS and FT), filtration through an LTI system, s	· ·					
2	 Random signal analysis and stochastic processes: Random variables: real and complex random variables/vectors, univariate and joint density functions, linear and non-linear transformations, conditional densities, multivariate Gaussian density (real and complex), limit theorems (CLT and LLN); stochastic processes: classifications, time and frequency domain characterizations, filtration through an LTI system, various important processes (e.g., Gaussian, Poisson etc.). 									
3		ulation of r								

Modu Code		EN5830	Title	Engineering Decision Theory		Credits: 4				
Lear	Learning Outcomes:									
On co	On completion of this module, students should be able to;									
1	Discri	iminate bet	tween de	erministic and data-driven models.						
2	· · ·	/ linear al on making	•	and statistical concepts to formulate opt	imizatio	n problems in				
3	Make techni	-	ıboptima	l decisions for a given problem by using app	propriate	e optimization				
4	Manip	pulate the s	state-of-	ne-art optimization software tools.						
Outli 1	Vecto	llabus: ors and man position.	atrices:	vector algebra, matrix algebra, properties of	matrice	s, spectral				
2				s: Review of probability, sampling and san variate statistical techniques.	nple stat	istics,				
3	Optin	nization a	s a tool :	n engineering decision making: Different nalytical, algorithmic.	classes,	different				
4	Convex optimization models: Convexity: convex sets, convex functions, convex optimization problems, introduction to duality, optimality conditions; classes of optimization problems: linear models, quadratic models, other models.									
5	0	ithmic ap or-point m	-	: Descent methods, Newton's method, othe	er metho	ods (e.g.,				
6	Mode	eling syste	ms for c	onstructing and solving convex programs	CVX.					

Mod Code		EN5361	Title	Advanced Networking Concepts	Credits: 3					
Lear	Learning Outcomes:									
On c	omple	etion of this	module,	, students should be able to;						
1	Eval	uate OSI pr	otocols i	in terms of their ability to scale in modern context.						
2	Com	pare legacy	and sof	tware defined networks.						
3	Eval	uate QoS of	f a netwo	ork through appropriate use of network measuremen	t techniques.					
4	App	ly suitable r	network	management techniques to meet network KPIs.						
5	Expl	lain the wor	king of 1	new high-performance protocols.						
Outl	`	yllabus: iew of OSI	laver pr	otocols, evaluation of their resilience and packet	processing:					
	L2-I		s, interne	et topology and effects of scaling (IPv4, IPv6), packet						
2		ware define cepts and in		orking (SDN) and network function virtualization tation.	n (NFV):					
3	Network performance measurements and quality of service: Requirements, measurement mechanisms, QoS parameters: delay, jitter and throughput; reasoning for QoS and potential solutions.									
4	Netv	work mana	gement:	Active: deep packet inspection; passive: SNMP, N	etFlow.					
5	0	h performa E-W traffic.		protocols: QUIC, data center specific protocols to	support N-S					

Mod Code		EN5261	Title	Telecommunications Technology Management	Credits: 3				
Lear	Learning Outcomes:								
On c	ompl	etion of this	module,	students should be able to;					
1	Ass	ess the role of	of teleco	mmunication in the societal modernisation.					
2	Clas	ssify telecon	nmunica	tion networks and services and their evolution.					
3	Ana	lyze market	s and co	nsumer behaviour for telecom services in Sri Lanka					
4	Plan	technologi	cal transi	tions and the management process.					
Outli		yllabus: ssification o	of telecon	mmunication networks and services.					
2	Tele	ecommunic	ation in	dustry overview: Global and local industry lands	cape.				
3				ration networks: Fundamentals of fixed and mobile technological transitions.	e technology,				
4	Pra	ctical aspec	ts of mo	dernisation and the role of telecommunication n	etworks.				
5	Qua	ality of serv	ice and	quality of experience in telecommunication servi	ces.				
6	Mai	rketing con	cepts for	r telecommunication products and services.					
7	Tele	ecommunic	ation pr	oject management.					
8	Rol	e of the star	ndards a	nd regulation.					

Modu Code		EN5601	Title	Digital Communications	Credits: 3					
Lear	Learning Outcomes:									
On co	In completion of this module, students should be able to;									
1	Iden	tify the com	municat	tion process as fundamentally a discrete process.						
2	Ana	lyze various	digital l	base-band/band-pass transmission schemes.						
3	Deri char		num rece	eiver structure for a given digital transmission schen	ne over AWGN					
4	Desi	ign wavefor	ms and r	receiver structures for an ISI channel.						
5		ulate variou erically.	s digital	transmission techniques and compare their performa-	ance					
		yllabus:								
1	_		0	ilation techniques.						
2		tal base ba								
3	-	-	0	: representation and sampling.						
4	Disc	rete repres	entatior	1 of continuous signals.						
5	Digi	tal band pa	iss trans	smission techniques.						
6	Opt	imum recei	ver stru	ctures for AWGN channel.						
7	SER	R/BER anal	ysis of d	ligital transmission techniques.						
8	The	effect of ch	annel:]	ISI.						
9	ISI	mitigation (echniqu	les.						

Mod Code	lule e	EN5371	Title	Network Design	Credits: 3					
Lear	Learning Outcomes:									
On c	ompl	etion of this	module,	, students should be able to;						
1	Just	ify the need	for full s	stack (L2-L7) considerations in network design.						
2	Des	ign high per	formanc	e networks to meet a given QoS KPI.						
3	Eva	luate the net	work pe	rformance using appropriate simulation tools.						
Outl	line S	Outline Syllabus:								
	Full stack considerations for network design.									
1	Full	stack cons	ideratio	ns for network design.						
1 2	_			ns for network design. ned networks (SDN).						
-	Des Des	ign of softw ign of follov	are defi ving Net	5	rprise					
2	Des Des netv	ign of softw ign of follov	vare defi ving Net Is (core 1	ned networks (SDN). tworks: LAN, campus networks, MPLS based enter networks) to meet QoS KPIs.	rprise					

Modu Code	le EN5611	Title	Wireless Communications	Credits: 3						
Learn	Learning Outcomes:									
On con	On completion of this module, students should be able to;									
	Explain various application/prop		of the propagation channel on the received signal in scenario.	a given						
	Select appropri channel.	ate mea	sures to countermeasure the harmful effects of	the propagation						
	L		e of wireless communication systems using analytic compare different systems.	cal and						
4	Plan a wireless	system to	o satisfy the coverage and capacity requirements.							
1	computation tec new models for propagation; sta scale; channel c	hniques: mmwav tistical c haracteri		rical models, evice-to-device scale and large-						
1	ime, multipath combiners; anal ransceiver desi	diversity ysis of d gn princi	easures: Diversity schemes: space, frequency, pola y; receiver diversity: selection, switched, maximal-r iversity schemes: analytical and simulation techniq ples for wireless channels.	atio, equal-gain ues; signal and						
t		plexing,	AO) systems : MIMO system model, MIMO transce for diversity, for interference reduction; new trends.							
c c		oility, us	planning : frequency reuse, co-channel interference er capacity evaluation, techniques to improve cover networks.							

Mod Code		EN5850	Title	Advanced Stochastic Processes	Credits: 3				
Lear	Learning Outcomes:								
On c	omple	etion of this	module,	, students should be able to;					
1	Disc	criminate va	rious sto	chastic processes depending on their utility.					
2	Cha	racterize cei	rtain phy	vsical systems with uncertainties as stochastic mod	lels.				
3	Ana	lyze the per	formanc	e and the limitations of certain useful stochastic p	rocesses.				
4	Sim	ulate randor	n proces	sses.					
Outl	·	yllabus: chastic mod	l els: Mar	rkov chains, Poisson processes.					
2				ning processes, time reversible Markov chains, hid nulations, continuous-time Markov chains.	lden Markov				
3		-		ing processes, inter-arrival and waiting time district occesses, conditional distribution of the arrival time					
4	Eler	nentary qu	euing sy	vstems: M/M/1, M/M/∞, M/M/m, M/M/1/K, M/M	l/m/m.				
5	Moi	nte Carlo si	mulatio	ns					

Modu Code		EN5821	Title	Applied Information Theory		Credits: 3				
Lear	Learning Outcomes:									
On co	omple	etion of this	module,	tudents should be able to;						
1	Desi	ign a suitabl	e lossles	source code for a discrete mem	oryless source.					
2	Eval	luate the inf	ormatior	capacity of a discrete memory le	ess channel.					
3	Calc	culate the rat	te distort	on function of a given source.						
4	App	ly principle	s of info	nation theory to evaluate comm	unication systems.					
	-	yllabus:								
1	mea	sures: self in	nformati	Definition of information, inform n, entropy, relative information, , Fano's, data processing.						
2	code	es, existence	of Huff	on: Classes of codes, average le an codes, optimality of Huffma , practical examples for data con	in codes, Shannon-l					
3	coding, arithmetic coding, practical examples for data compression. Capacity of discrete channels: Information capacity and operational capacity, capacity calculations of simple discrete memoryless channels, symmetric channels, preview of channel coding theorem: asymptotic equipartition property, jointly typical sequences, channel coding theorem.									
4	codi		for Gau	The Gaussian channel, differenti ian channels, capacity of the Ga s.						
5				Rate distortion, rate distortion tion of the rate distortion function		rtion theorem				

Modu Code	EN5860	Title	Applied Statistical Learning	Credits: 3		
Learr	ning Outcomes:					
On co	mpletion of this	module,	students should be able to;			
1	Discriminate a	mong di	fferent statistical learning techniques and relate	ed tools.		
2	Make inferenc	es/predie	ctions on parameters by using appropriate learn	ing techniques.		
3	Analyze datas	ets by us	ing state-of-the-art software tools.			
Outlin 1	ne Syllabus: Supervised ve	ersus un	supervised learning.			
2	Bias-variance	trade-o	ff.			
3	Resampling techniques.					
3	Resampling t	echniqu	es.			
<u> </u>	1 0	-	es. echniques: Linear regression, classification, SV	√M.		

Mod Cod		EN5461	Title	Statistical Signal Processing	Credits: 3						
Lear	Learning Outcomes:										
On c	On completion of this module, students should be able to;										
1	Clas	sify various	detectio	on and estimation techniques and related analytical to	ools.						
2	Deri	ve optimal	test statis	stics for a given detection scenario.							
3	Esti	mate parame	eters of b	broad class of signals embedded in noise.							
4	Esti	mate parame	eters of c	ertain random processes.							
5	Sim	ulate detecto	ors/estim	ators by using computational software.							
Outl	line S	yllabus:									
1	Min	Detection theory: Statistical decision theory: Neyman-Pearson fundamental lemma, Minimax test; binary and M-ary hypotheses tests, detection of signals in noise (General Gaussian problem).									
2				ious estimators and their properties: Least squares, l yesian estimators (general/linear estimators), Kalma							
3	Mor	nte Carlo si	mulatio	ns.							

Modu Code	le EN5271	Title	Telecommunications Policy	Credits: 3						
Learn	Learning Outcomes:									
On co	mpletion of this	module	, students should be able to;							
	Evaluate the importance of telecom/ICT policy in Sri Lanka, and the process of successful policy development.									
2	Assess ICT poli	cies in o	ther countries through case studies.							
	Identify the curr directives.	ent telec	communication related policy issues in Sri Lanka and	d develop policy						
4	Evaluate investr	nents pr	oposals in telecommunications.							
1	Telecom/ICT p	olicy in	tions policies: Global, regional, national and sector itiatives: At global and regional level, in Sri Lanka, initiatives of other countries.							
3	Process of publ	1								
	Digitization an									
	0	0	omic implications of telecommunications.							
6	Arguments ove	r natur	al monopoly, oligopoly and market competition.							
7	The privatizati	on of te	ecommunications.							
8	Foreign direct	investm	ent in telecommunications.							
9	Barriers to ent	ry and s	trategic competition							
10			egulation, regulation of future networks, regulation ty and feasibility of telecommunications deregulation							

Modu Code		EN5651	Title	Microwave Systems	Credits: 3	
Lear	ning	Outcomes:	•			
On co	omple	tion of this	module,	students should be able to;		
1	Desi	gn basic mi	crowave	components: Waveguides, antennas etc.		
2	Real	ize a terrest	rial mici	owave link for a given specification.		
Outli	Outline Syllabus:					
1	Intro	oduction: R	Review o	f vector calculus, the electric and magnetic fields, M	faxwell's	
	equa	tions.				
2	wave	elength, gui	de wave	es: Mode solutions, transverse electric and magnetic length, phase and group velocity characteristics, wal cs, design problems.		
3	The horn antenna : The horn antenna as an impedance matching device, flared horn characteristics, corrugated horns.					
	Microwave antennas: Radiation, wire antennas: dipole, longwire antennas, axial mode helix; log periodic antenna, discone antennas, reflector antennas: corner, parabolic, cosecant; feeder design, realization of large reflector antennas, lens antennas, design problems.					
5		restrial Mic niques.	crowave	Links: Tropospheric propagation, link power budge	et, diversity	

Mod Code		EN5631	Title	Wireless Networks	Credits: 3		
Lear	ning	Outcomes:					
On c	omple	etion of this	module,	, students should be able to;			
1		lyze and eva vorks.	aluate M	AC, network and transport layer protocols designed	for wireless		
2	Desi	ign algorithi	ms for ef	ficient implementation of resource constrained wire	less networks		
3	Compare different wireless network standards and provide recommendations on wireless networking solutions for a given application.						
4	Use	network sin	nulators	to evaluate advanced wireless networks.			
5	Opti	imize the pe	rforman	ce of wireless networks.			
Outli 1		yllabus: eless netwo	orking sv	z stems and standards : Wireless LANs MANs PA	Ns and BANs		
1	Wireless networking systems and standards: Wireless LANs, MANs, PANs and BANs, PHY, MAC, network and transport layer issues in wireless networks, challenges in wireless network design: power constraints, medium unreliability, mobility management, localization.						
2				rotocols: Development of MAC, network and transpective tworks, performance evaluation, case study: wireless			
3	Advanced wireless networks, performance evaluation, case study: wireless Erics: Advanced wireless networking techniques: New trends in wireless network design: device-to-device networks, massive machine type communications, cooperative relay networks, cognitive radio networks, internet-of-things, vehicular networks; modeling and analyzing: spatial modeling of wireless networks, performance evaluation, cross-layer design and optimization.						
3	Sim	ulation of a	dvance	d wireless networks : Simulation of wireless networ gorithms, performance evaluation.	ks: OMNET++		

Mod Code		EN5761	Title	Emerging Technologies	Credits: 1		
Lear	rning	Outcomes:					
On c	omple	etion of this	module,	, students should be able to;			
1	Describe the set of technologies that are considered to be emerging.						
2	Exp	Explain technical operation of emerging technologies.					
3	Ana	Analyze the impact of emerging technologies on current telecommunication systems.					
Outline Syllabus:							
1	Gue	st lectures o	n the lat	est technologies used in communication systems.			

Module Code		EN5870	Title	Pattern Recognition	Credits: 3
	0	Outcomes:			
				e, students should be able to	
1	App	oly a few cla	ssic lear	rning techniques in solving simple problems.	
2		cribe the im		e of concepts of deep networks to be able to imple amework.	ement in a simple
3	App	oly deep con	volution	al networks to solve common vision problems.	
4		bly deep recto blems.	arrent ne	etworks to solve common natural language processi	ng and similar
Outl 1	Intr type	es of learnin	g algorit	ing: Probability and random variable, basics of patt	gradient
2	descent, linear regression, Baye's inference, bias-variance tradeoff, logistic regression. Deep networks : Feed-forward networks, backpropagation, vanishing- exploding-gradients, activation functions, parameter norm penalties, regularization, data augmentation, dropout, parameter initialization, optimization algorithms, loss functions, performance metrics, selecting hyperparameters.				
3				tworks: Convolution, pooling, padding, strided cor of successful convolutional networks.	volution, up-
4	Rec bacl	urrent neu kpropagatio	ral netw n throug	vorks : Recurrent neural network (RNN) models and h time, deep recurrent networks, vanishing gradien memory and gated recurrent units, bi-directional R	t problem in
5	App	olications: A	Applicati	ions in computer vision, natural language processin 1 autonomous driving.	

Mod Code		EN5281	Title	Network Planning and Management	Credits: 3		
Lear	rning O	utcomes:					
On c	ompleti	on of this	module,	students should be able to;			
1	Descri	be the dif	ferent st	ages in the network planning process.			
2		Dimension a high level network for a given application considering all aspects of network planning and design.					
3	Design	n an end to	o end net	twork plan.			
	ine Syll		•		. 1		
1	Network planning and dimensioning : Link budget analysis, service area and morphology analysis, CW test and propagation model calibration, nominal radio network design, site acquisition, service deployment.						
2	Radio network planning.						
3	Operation, administration, management and maintenance of services : Network-level OA&M, configuration management, fault management, performance management, security management.						
4	Trans	port and	core net	twork planning.			

Mod Code		EN5621	Title	Broadband Wireless Systems	Credits: 3		
Lear	rning	Outcomes:					
On c	ompl	etion of this	module	, students should be able to;			
1	Des	ign an OFD	M syster	n for given specifications.			
2	Imp	lement an O	FDM sy	stem in software and evaluate its performance.			
3	Ana	lyze single-	user and	multiuser broadband systems.			
4	Rec	ommend and	d design	broadband wireless solutions for a given requireme	nt.		
Outl	Spr			nunications: Spread spectrum principles: frequency sequence spread spectrum, CDMA systems, CDMA			
				er and multiuse scenarios.			
2	chai	Multicarrier modulations (MCM): Principles of MCM, OFDM systems: implementation, channel estimation, power allocation; issues: peak-to-average power ratio, timing and frequency offset, OFDM and MIMO.					
3	Advanced techniques wireless broadband: Limitations of current systems, adaptive transmission, beamforming, interference coordination schemes, single carrier FDMA, filter bank multicarrier systems, cooperative communications, spectrum sharing systems, chirp spread spectrum.						
3			-	in standards : Spread spectrum techniques: 3G cell 2M, LTE, wireless LAN, LTE-A, WiMAX.	ular, wireless		

Mode Code		EN5981	Title	Industrial/Research Project	Credits: 5	
Lear	ning	Outcomes:				
On co	ompl	etion of this	module	, students should be able to;		
1	Exp	lain specific	issues r	elated to the chosen project by cross referencing wit	h the literature.	
2	Den	nonstrate an	alytical s	skills required for advanced research.		
3	Wri	te a comprel	hensive	survey paper.		
4	Prepare a detailed proposal for M.Sc. research					
Outline Syllabus:						
1	Lite	rature surve	y releva	nt to the topic selected under the guidance of a senio	r staff member.	

Modu Code		EN5691	Title	Network Security	Credits: 3
Lear	ning O	utcomes:			•
On co	ompleti	on of this	module,	students should be able to;	
1	Explai	n principl	es relate	d to modern cryptography and network security.	
2		•	•	ption concepts, ciphers, symmetric/asymmetric and the symmetric and the systems.	key encryption
3		are and co unications		ethodologies that are currently being used to secure ice.	network
4		security t nisms for		nd propose state-of-the-art attack detection and prevent.	ention
	ine Syll				
1	encryp	otion stand	lard (DE	mmetric encryption: classical and modern algorithm S), advanced encryption standard (AES), stream enc	
				andom number generation.	
2		-		ublic-key algorithms: RSA and elliptic curve.	
3				tegrity algorithms: Cryptographic hash functions, ngital signatures.	nessage
4	Mutua	al trust: k	Key man	agement, key distribution, user authentication techni	iques.
5	Network security and internet security: Using cryptographic algorithms and security protocols for network security, transport-level security, wireless network security, e-mail security, IP security.				
6	-	n security s; firewall		ting a computer system from security threats: intrud	ers, viruses,
7	Novel		ons: Sec	curity issues related to 5G, software defined network	ing (SDN) and

Modu Code		EN5681	Title	Optical Communication and Networks	Credits: 3	
Learn	ning	Outcomes:	•			
On co	omple	etion of this	module,	students should be able to;		
1	Desc	cribe differe	nt prope	rties of optical fiber that influence characteristics of	propagation.	
2	Expl syste	-	ration of	different optical devices used in an optical commun	nication	
3				s of the modulation techniques, optical amplificatio dynamic routing methods.	n and other	
4	Ana	lyze the imp	bact of n	bise and different optical impairments in designing of	optical systems.	
5	Desi	gn an optica	al comm	unication system for a given set of requirements.		
1	Gui prop mod	agation, fib e dispersior	er attenu 1.	Optical fibers and classification, Ray theory, theory ation, fiber absorption, polarization, chromatic and	polarization	
2	Transmission system components: Optical sources, optical receivers, couplers, isolators, optical modulators, wavelength converters, fiber amplifiers, arrayed waveguide grating, fixed/reconfigurable optical add drop multiplexer.					
3	Opti		rement t	echniques: Optical signal to noise ratio (OSNR), ey	ve diagrams, bit	
4	Optical fiber communication systems: WDM architecture, OTDM architecture, OTN architecture, optical access networks, digital modulation formats, direct optical detection, receiver concepts in optical communication, coherent optical transmission, optical burst switching.					
5	Opt	U	design:	Link budget calculation, noise considerations, impa	irment	

Elective Modules from PG. Diploma/M.Sc. in Electronics and Automation

Module Code	EN5450	Module Title	Digital Signal Processing	Credits: 3			
	Learning Outcomes At the end of the module the student will be able to:						
1	Analyze dis domains.	Analyze discrete-time (DT) linear and time-invariant (LTI) systems in transform domains.					
2	Determine the discrete Fourier transform (DFT) of finite-duration discrete-time signals using fast Fourier transform (FFT) algorithms.						
3	Design FIR and IIR DT filters for prescribed specifications.						
4	Analyze basic muti-rate systems and design sampling rate changing systems.						

5	Examine errors associated with the physically realizable A/D and D/A conversions.							
6	Implement digital filters using suitable structures by evaluating finite-precision numerical effects.	Implement digital filters using suitable structures by evaluating finite-precision numerical effects.						
Outline S	yllabus							
1	Review of time-domain and frequency-domain analysis of DT signals and systems Basic DT signals; properties of DT systems; LTI systems and convolution summation; discrete-time Fourier transform; frequency domain analysis of LTI systems. continuous-time to DT conversion; Nyquist-Shannon sampling theorem; reconstruction of continuous-time signals from DT signals.							
2	Analysis of LTI systems using z-transform Review of z and inverse z transforms; properties of the region of convergence; properties of the z transform; representation of discrete-time LTI systems using the z transform; stability of discrete-time LTI systems; Jury-Marden stability criterion; properties of pole-zero plots of special DT LTI systems: finite-duration impulse response (FIR) filters; infinite-duration impulse response (IIR) filters; minimum-phase filters; all-pass filters.							
3	Discrete Fourier Transform and Fast Fourier Transform Algorithms Review of discrete Fourier series, definitions of the DFT and IDFT, properties of the DFT, linear convolution using the DFT, direct computation of the DFT, radix-2 FFT algorithms, application of the DFT to estimate frequencies of sinusoidal signals, orthogonal frequency division multiplexing (OFDM), and narrowband multi-beam beamformers.							
4	FIR and IIR Filter Design Frequency-domain representation of LTI systems; magnitude response and phase response; importance of linear-phase response; filter specifications; classification of DT filters and design methods; design of FIR filters using windowing method; design of IIR filters using the impulse invariance and bilinear transform methods. Design of FIR and IIR filters using optimization techniques.							
5	Multi-Rate Systems							

	Downsampling and upsampling, decimation and interpolation, rational sampling rate changes, noble identities, polyphase representation of signals and LTI systems, efficient decimation and interpolation, efficient rational sampling rate changing systems.	
6	Digital Processing of Analog Signals and Finite-Precision Numerical Effects A/D conversion, quantization errors, D/A conversion, basic structures for DT LTI systems: direct forms, cascade form, parallel form, transposed forms; quantization in digital filters, effects of coefficient quantization, effects of round-off noise, zero-input limit cycles in IIR digital filters.	

Module Code	EN5204	Module Title	Vision Based Automation	Credits: 3
•	Outcomes d of the mod	dule the st	udent will be able to:	
1	Apply imag	ge processi	ng algorithms for image enhancement	
2	Apply mac	hine vision	algorithms for detection and recognition	
3	Apply visua	al SLAM fo	r mapping and autonomous navigation	
4	Design ma	chine visio	n solutions for common industry problems.	
Outline S	yllabus			
1	(b) Getting (c) Projecti (d) Represe	ction to co started wi on, camera entation of	mputer vision th OpenCV using Python as, light, shading, and colour a grayscale and colour images ition and DPI	
2	(a) Interpol (b) Morpho (c) Frequer	lation algo blogical opency domair perations, l filtering	n processing histograms, linear filtering	
3	Multiple-v (a) Camera (b) Epipola (c) Two-vie (d) Structur	calibration r geometry w stereo	n, measurements using a camera	
4		olding growing neds contours (o ction to me	ptional) ean-shift, level-sets, and graph-cuts (optional) mantic segmentation	

5	Vision-based automation (a) Introduction to SLAM (b) Recursive state estimation (c) Parametric Filters: Kalman filter and extended Kalman filter (d) Visual SLAM (e) Visual servoing	
6	Recognition (a) Classifiers, multi-layer perceptions, and convolutional neural networks (b) Image classification	

	c) Object detection	
(a	Applications a) Set-up of a vision system in industry b) Typical industry problems and solution s	

Module Code	EN5202	Module Title	Electronic Circuit Design	Credits: 2
	Outcomes d of the mod	dule the st	udent will be able to:	
1	Analyze the converter	Analyze the control-to-output transfer function of a switched-mode power converter		
2	Investigate	a suitable	compensator to close the feedback loop	
3	Implement	the feedb	ack loop using analog and digital techniques	
Outline S	yllabus			
1	large-signa	trol-to-out I models u	ions put, output impedance and input-to-output sma sing state-space model and average switch mod ain transfer functions	
2	-	e propertie al-integral	es of proportional, proportional-integral and -derivative compensators, their realisation using s	ganalog
3	-	voltage an stability c	loop Id current feedback sensors, model the feedbac If the open-loop and closed-loop system using E	

Module Code	EN5102	Module Title	Digital Systems Design	Credits: 3	
-	Learning Outcomes At the end of the module the student will be able to:				
1	Design seq	uential cire	cuits using Verilog HDL.		
2	Apply the digital design concepts to programmable logic devices.				
3	Analyze the concepts of asynchronous sequential systems.				
4	Analyze the concepts of SoC and NoC.				
Outline S	yllabus				
1	Introduction IC design p consideration	orocess, tes	ting and yield, packing techniques, and timing		

2	RTL Coding and Verification Background, module and port definitions, coding styles, Verilog syntax, test methodology.	
З	System Bus Architecture Bus definitions, background, computer system bus, PCI, PCIe, reusable IPs, bus design parameters, AMBA bus APB, and AHB protocol.	
4	Reconfigurable Hardware Introduction, PROM, PAL, PLA, NOR-NOR PLA, NAND-NAND PLA, PAL Macrocell, and GAL, , SPLD vs CPLD, FPGA.	
5	Embedded Systems ES design. SW development, accelerated system architecture, RT control systems, low power designs, dynamic power management, and task scheduling.	
6	Hardware Software Codesign Codesign benefits, power comparison, low power design, reusable IPs, HW-SW co-design flow, and co-design environments.	
7	Asynchronous Sequential Systems Synchronizer circuits, Metastability, clock domain crossing, asynchronous data transfer, handshake techniques, and FIFO design.	
8	SoC & NoC System on chip, interconnect modelling, Bus pros and cons, network on chip, network topologies, and switching techniques.	

Module Code	EN5008	Module Title	RF Circuit Design	Credits: 2
-	Learning Outcomes At the end of the module the student will be able to:			
1	Estimate th passive cor		get for a radio-frequency (RF) system consisting	of active and
2		-	ansmission lines and impedance matching circu ith prescribed specifications.	its for
3	Analyze and design microwave filters for prescribed specifications.			
4	Estimate the noise figure and dynamic range of RF systems.			
Outline S	Outline Syllabus			
1	History of engineerin boundary o	RF enginee g; modern conditions;	rcuit design and Review of Electromagnetic The gring; applications of RF (microwave and mmway software tools; Maxwell's equations; fields in m basic plane wave solution, energy, and power; ave reflection from a media interface.	/e)

2	Transmission Line Theory The lumped-element circuit model; field analysis of transmission lines; the smith chart; the quarter-wave transformer; generator and load mismatches; lossy transmission lines.	
3	Introduction to RF Systems System aspects of antennas; antenna parameters: e.g., radiation pattern, beamwidth, directivity, efficiency, gain, and impedance; antenna types: dipole, microstrip, horn, parabolic; the Friis formula; link budget and link margin; radio receiver architectures.	
4	Transmission Lines and Waveguides General solutions for TEM, TE, and TM waves; rectangular waveguides; circular waveguides; surface waves on a grounded dielectric sheet; strip lines and microstrip lines.	
5	Microwave Network Analysis Impedance and equivalent voltages and currents; impedance and admittance matrices; the scattering matrix; the transmission (ABCD) matrix.	
6	Impedance Matching and Tuning Matching with lumped elements; single-stub tuning; double-stub tuning; the quarter-wave transformer; multi section matching transformers: binomial and Chebyshev.	
7	Microwave Filters Periodic structures; filter design by the image parameter method; filter design by the insertion loss method; filter transformations; filter implementations.	
8	Noise and Nonlinear Distortion Noise in microwave circuits; noise power and equivalent noise temperature; noise figure; noise figure of a cascaded system; nonlinear distortion: gain compression	

harmonic and intermodulation distortion, third-order intercept point; linear and
spurious free dynamic range.

Modu Code		EN5730	Title	Machine Learning for Communications	Credits: 3
Learr	ning	Outcomes:			
On co	mple	tion of this	module	, students should be able to;	
	Understand the fundamentals of machine learning (ML) and its applications in communication systems.				
2	Ident	Identify different machine learning approaches relevant to the physical layer.			
3	Design and implement machine learning models to solve physical layer problems.				
4	Discuss 3GPP standardization on machine learning in communication technologies.				
Outlin	Outline Syllabus:				

1	Introduction and ML basics: What ML is, supervised learning, unsupervised
	learning, reinforcement learning, gradient descent and backpropagation, deep neural
	networks, convolutional neural networks, graph neural networks, autoencoders,
	deep reinforcement learning, ML tools for communication system design
2	Review Fundamentals of Wireless Communications : Source coding, channel coding,
	signal detection, channel capacity, multiple-input multiple-output (MIMO) systems,
	orthogonal frequency division multiplexing (OFDM)
3	Applications of ML for Communications : Signal detection, channel estimation, channel
	coding, capacity estimation, model-based machine learning, model-free machine learning,
	radio resource allocation
4	3GPP Standardization on Machine Learning Activities, Open Problems and
	Challenges: 3GPP Rel. 18 ML activities, remaining challenges, and opportunities in
	applications of machine learning in communications

Resource Persons

Lecturers:

Department of Electronic and Telecommunication Engineering:

- 1. Prof. S.A.D. Dias
- 2. Eng. A.T.L.K. Samarasinghe
- 3. Dr. A.A. Pasqual
- 4. Dr. K.D.P. Dharmawansa
- 5. Dr. B.K.R.P. Rodrigo
- 6. Dr. L.W.P.R. Udayanga
- 7. Dr. M.A.U.K. Premaratne
- 8. Dr. P.C. Weeraddana
- 9. Dr. C.U.S. Edussooriya
- 10. Dr. T.N. Samarasinghe
- 11. Dr. K.T. Hemachandra

Visiting Staff:

- 1. Dr. A.S. Sumanasena, Managing consultant, Real Wireless Ltd., Pulborough, West Sussex, UK, B.Eng. (Trichy, India), M.Sc. (London), Ph.D. (Surrey).
- Eng. P.M.D.C Thilakarathne, Manager Packet Core Network, Mobitel (Pvt) Ltd., B.Sc. Eng. (Moratuwa), M.Sc. (Moratuwa), MBA (Colombo).
- Eng. R. Yasaratne Manager Core Network Planing & Operations at Dialog Axiata PLC, B.Sc. Eng. (Moratuwa), M.Sc. (Manitoba, Canada).
- 4. Dr. M. Liyanage, Marie Curie Fellow, University College Dublin, B.Sc. Eng. (Moratuwa), M.Eng. (AIT, Thailand), D.Sc. (Oulu, Finland).
- Dr. S.C. Samarasekere, Senior R&D IC design Engineer, Broadcom Limited, Australia, B.Sc. Eng. (Moratuwa) Ph.D. (Melbourne, Australia).